
ACN-Sim: An Open-Source Simulator for
Data-Driven Electric Vehicle Charging Research

Zachary J. Lee∗, Daniel Johansson†, Steven H. Low∗
∗Division of Engineering & Applied Science, Caltech, Pasadena, CA

†Faculty of Engineering, Lund University, Lund, Sweden
zlee@caltech.edu

Abstract—Smart electric vehicle charging has recently gar-
nered significant attention in the research community due to need
to charge large numbers of electric vehicles (EVs) economically,
as well as the potential of providing grid services using EVs.
However, research into practical online charging algorithms
has been hampered by the lack of a widely available, realistic
simulation environment in which to evaluate algorithms and test
assumptions. To meet this need, we have developed ACN-Sim,
a data-driven, open-source simulator based on our experience
building and operating real-world charging systems. ACN-Sim
provides a modular, extensible architecture which models the
complexity of real charging systems, including battery charging
behavior and unbalanced three-phase infrastructure. In addition,
ACN-Sim integrates with a larger ecosystem of research tools
for EV charging, including ACN-Data, an open dataset of EV
charging sessions to provide realistic simulation scenarios, and
ACN-Live, a framework for field-testing charging algorithms.

I. INTRODUCTION

Electric vehicles (EVs) are growing in popularity globally,
with the International Energy Agency (IEA) predicting over
125 million EVs worldwide by 2030 [1]. Likewise, McKinsey
& Company, estimates that EVs will consume 271 billion
kWh of electricity in 2030, requiring 42 million EVSEs1 (also
know as charging ports) and necessitating nearly $50 billion
in charging infrastructure investments [2].

Charging all of these EVs will also require new techniques
for scheduling and control to avoid adverse effects on the
electric grid while reducing capital and operating costs. The
development of these techniques has garnered significant atten-
tion in the research community. However, transitioning these
algorithms from theory to practice requires dealing with the
complexities of practical systems which are often overlooked
in our simplified theoretical models. While these simpler mod-
els can make analysis tractable, they can also lead to a sizable
gap between theoretical results and robust, high-performance
implementations of algorithms. Bridging this gap is critical to
making an impact in practice, but doing so requires: (1) access
to real-world data; (2) detailed simulations driven by realistic
models; and (3) the ability to test an algorithm implementation
in the field.

This material is based upon work supported by NSF through grants
CCF 1637598, ECCS 1619352, and CPS including grant 1739355, as well
fellowship support through the NSF Graduate Research Fellowship Program
1745301 and Resnick Sustainability Institute. We would like to thank the
team at PowerFlex, especially Cheng Jin, Ted Lee and George Lee, as well
as Rand Lee, James Anderson, Umar Hashmi, and Jorn Reniers for providing
data, expertise and ideas to this project.

1Electric Vehicle Supply Equipment

Adaptive Charging Network

ACN-Data ACN-Sim

Constraints

ACN-Live

D
at

a

Control Signals

Simulation
Scenarios

Algorithm
Validation

Fig. 1. The ACN Research Portal gives users many of the benefits of an EV
charging testbed without needing to build one themselves. It includes data
collected from real charging sessions (ACN-Data), a simulator to evaluate
new ideas (ACN-Sim), and access to run on real hardware (ACN-Live).

In order to bridge this gap in our own research, we devel-
oped the Caltech Adaptive Charging Network (ACN), a first-
of-its-kind testbed for large-scale, high-density EV charging
research [3], [4]. This testbed consists of over 50 networked
and controllable EV charging stations which allow us to collect
data and field test algorithms with real hardware.

To give more researchers access to the benefits of a real
EV charging testbed, we have developed and released the
ACN Research Portal (ACN-Portal). The portal consist of
three major components: (1) ACN-Data, a dataset of over
35,000 real EV charging sessions from the Caltech ACN and
similar sites around California [5]; (2) ACN-Sim, an open-
source, data-driven simulation environment; and (3) ACN-
Live, a framework for researchers to field test algorithms on
the Caltech ACN. The interaction between these tools and the
physical ACN infrastructure is shown in Fig. 1.

In this work we will focus on ACN-Sim, which is open-
source and available at [6]. We begin by comparing ACN-Sim
with existing simulators in Section II. We then describe the
modular architecture of ACN-Sim in Section III. In Section IV
we describe how algorithms are implemented for ACN-Sim
and how they can easily be used to control real hardware
with ACN-Live. We then explain the benefits of ACN-Sim in
terms of simplifying researchers’ workload in Section V and
demonstrate these benefits through case studies in Section VI.
Finally we conclude this paper and look toward the future of
ACN-Sim in Section VII.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an important
role in smart grid research community. MATPOWER [7] and

Simulator

Charging Network

EVSE

EV

Battery

Event Queue

Event Algorithm

Interface

Infrastructure
Constraints

Hardware
Events
Algorithms

Fig. 2. Architecture of ACN-Sim. This simulator utilizes a modular, object-
oriented architecture which closely resembles the components of a physical
charging system. In this diagram color represents the four categories of
modules in ACN-Sim. Depth in the diagram refers to composition i.e. an
EVSE can contain an EV which contains a Battery.

Pandapower [8] have been extensively used by the community
to study power flow related problems, while GridLab-D [9]
and OpenDSS [10] have found widespread use for accurately
modeling distribution systems. The importance of these open
tools cannot be overstated, as they have allowed the commu-
nity to work together to build more robust, feature-rich tools
which can be modified as needed to support new research.

Simulators specific to EV charging have also been devel-
oped and released to the research community. The most mature
of these is V2G-Sim, a simulation environment developed
at LBNL [11]. V2G-Sim has been used in many works to
analyze the ability of EVs to meet drivers mobility needs
in the context of: level-1 charging [12]; battery degradation
[13]; and demand response [14]. More recently, V2G-Sim
has also been used to examine grid level effects of smart
charging such as smoothing the duck curve [15]. Another
recently proposed simulator is EVLibSim, which models many
types of EV charging including standard conductive charging,
inductive charging, and battery swapping [16].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim
is specifically designed around evaluating online algorithms
which adapt to changes in the system state over time. In this
way ACN-Sim is complementary to these existing simulators
as they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a key benefit of
smart charging approaches.

III. SIMULATOR ARCHITECTURE

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to
model new behavior or add functionality. ACN-Sim includes
many of these models, but users are free to add their own
models in order to customize the simulator meet their needs.
We encourage researchers to contribute these new models back
to the project so that they can be utilized by others.

run()

Execute events in queue up
to current timestep

Recompute
Schedule? Call scheduling algorithm

Send pilot signals for
current time to EVSEs

Collect actual charging rates

Simulation finished

Update state and increment
timestep

Update stored charging
schedule

Pass pilot signal through
EV to Battery

EventQueue
Empty?

Yes

No

Yes

No

Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

A. Simulator
A Simulator object forms the base of any ACN-Sim

simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system. The
operation of the simulator is described in Fig. 3. During a
simulation the Simulator stores relevant data, such as the
event history, EV history, and time series for the pilot signal
and charging current for each EVSE, for later analysis.

B. Charging Network
Accounting for the electrical infrastructure of the charging

system, including transformers, switch panels, and cables, is
important to the design of practical EV charging algorithms.
By considering these constraints we can oversubscribe key
pieces of infrastructure, reducing capital costs. However, this
infrastructure is often three-phase and unbalanced.

To model electrical infrastructure, ACN-Sim uses the
ChargingNetwork class. ChargingNetwork has two
parts: a set of the EVSEs in the system and a
ConstraintSet which represents infrastructure limits.
Each constraint corresponds to a limit, Rj , on the magnitude
of a current in the network, Ij(t), and takes the form

|Ij(t)| =

∣∣∣∣∣
N∑
i=1

ciri(t)

∣∣∣∣∣ ≤ Rj , ∀t ∈ T
where N is the total number of EVSEs in the system, ri(t)
is the charging current of EVSE i at time t, and T is the set
of all timesteps in the simulation. Note that ri(t) is a phasor

of the form ri(t) = |ri(t)| · ejφi where the phase angle, φi, is
known based on how EVSE i is connected in the network. To
find ci we perform circuit analysis to calculate the relationship
between ri(t) and Ij(t).

Algorithms are able to interact with the ConstraintSet
in two ways. One approach is to parse the constraints and
include them directly in the algorithm, as is done with opti-
mization based algorithms such as those described in [4]. A
second approach is to utilize the is_feasible() method,
which can be used for algorithms that iteratively search for a
feasible schedule, such as those described in section IV.
C. EVSE

EVSEs allow us to control the charging current of an EV for
level-2 charging2. The EVSE communicates a pilot signal to
the EV’s on-board charger which is an upper limit on current
the EV is allowed to draw from the EVSE. The granularity of
this pilot is dependent on the particular EVSE. Some EVSEs
provide continuous control of the pilot signal while others offer
only a discrete number of set-points. In addition, according to
the J1772 standard, no pilot signals are allowed between 0 to
6 A [17]. In most current research, the additional constraints
imposed by EVSEs without continuous control are neglected
[18]. However, including these constraints is important for
practical algorithms and is non-trivial.

ACN-Sim provides three EVSE models which cover most
ideal and practical level-2 EVSEs:

• EVSE is the base class for all EVSE models and allows
any pilot signal between an upper and lower bound. By
default, EVSE allows any non-negative charging rate.

• DeadbandEVSE extends EVSE to exclude the J1772
standard deadband between 0 and 6 A.

• FiniteRatesEVSE only allows pilot signals within a
finite set of allowable rates. FiniteRatesEVSE can be
used to model many commercial EVSEs. For example the
EVSEs used in the Caltech ACN allow {6, 7, 8, ..., 31,
32} A or {8, 16, 24, 32} depending on the manufacturer.

Within ACN-Sim, EVSE is also the interface between the
the charging network and an EV. When an EV plugs into the
system, a reference to that EV is added to the corresponding
EVSE. When it is time to update the pilot to an EV, the
Simulator first passes the pilot to the EVSE which in turn
passes it on the EV and eventually the Battery. This mimics
the flow of information in a real charging system. Similarly,
when an EV leaves the system, the reference to that EV is
removed from the EVSE.
D. EV

The EV object is used to contain relevant information for
a single charging session such as arrival time, departure time,
estimated departure time, and requested energy. It also contains
a Battery object. Note that the estimated departure time
may differ from the actual departure time. Likewise, it may be
infeasible to deliver the requested energy in the allotted time
due maximum charging rate restrictions, system congestion,

2Level-2 EV charging utilizes the EV’s onboard charger. Level-2 EVSEs
provide between 3.3 - 19.2 kW at 208 - 240 V AC.

or insufficient battery capacity. By allowing this, ACN-Sim
models the case where user inputs or predictions are inaccurate
which is common in practice [5].

E. Battery
Most research in EV charging utilizes an ideal battery

model, where EVs are assumed to follow the given pilot signal
exactly. In practice, however, we see that the charging rate of
an EV is often strictly lower than the pilot signal and decays
as the battery approaches 100% state-of-charge [4], [18]. This
can significantly increase the total time required to charge the
battery and result in under utilization of infrastructure capacity.

ACN-Sim jointly models the vehicle’s battery and battery
management system. The battery’s actual charging rate de-
pends on the pilot signal as well as the vehicle’s on-board
charger, its state-of-charge, and other environmental factors.
ACN-Sim currently includes two battery models.

The Battery class is an idealized model and serves as the
base for all other battery models. The actual charging rate of
the battery, r̂(t), in this idealized model is described by

r̂(t) := min{r(t), r̄, ê(t)}

where r(t) is the pilot signal passed to the battery, r̄ is the
maximum charging rate of the on-board charger and ê(t) is the
difference between the capacity of the battery and the energy
stored in it at time t. We do not consider discharging batteries
so all rates are positive.
Linear2StageBattery is an extension of Battery

which approximates the roughly piecewise linear charging
process used for lithium ion batteries. In the first stage, referred
to as bulk charging which lasts from 0% to between 70 to 90%
state-of-charge, current draw, neglecting changes in pilot, is
nearly constant. In the second stage, called absorption, the
voltage of the battery is held constant while charging current
decreases roughly linearly. The actual charge charging rate of
the Linear2StageBattery is given by

r̂(t) :=

{
min{r(t), r̄, ê(t)} if SoC ≤ th

min
{

(1− SoC) r̄
1−th , r(t)

}
otherwise

where SoC is the state-of-charge of the battery and th marks
the transition from the bulk stage to the absorption stage of
the charging process.

Both battery models implement the charge() method.
This method takes in a pilot signal as well as the voltage of
the EVSE and the duration of the timestep. It then calculates
the actual charging rate of the battery and updates the battery’s
internal state.

Fig. 4 shows how these two models compare with one
charging profile taken from ACN-Data. In general, we find
that while the piecewise linear model is a good approximation,
it does not capture some of the higher frequency dynamics of
battery behavior that we observe in some charging sessions.
Because of this we plan to implement additional, higher
fidelity battery models in future releases of ACN-Sim.

0 20 40 60 80 100
Energy Delivered (%)

0

10

20

30
Cu

rre
nt

 D
ra

w
(A

)
Real Data
Ideal Battery
Linear2Stage Model

Fig. 4. Comparison of Linear2Stage and idealized Battery models with
a real charging curve collected from the Caltech ACN when the pilot signal
is not binding. We can see that the Linear2Stage model with appropriate
parameters matches the battery behavior well in this case.

F. Event Queue
ACN-Sim uses events to describe actions in the simulation.

There are three types of events currently supported:
• PluginEvent signals when a new EV arrives at the

system. A PluginEvent also contains a reference to
the EV object which represents the new session.

• UnplugEvent signals when an EV leaves the system
at the end of its charging session.

• RecomputeEvent signals when the algorithm should
be called regardless of if another event occurs.

Each event has a timestamp describing when the event should
occur. Events are stored in a queue sorted by their timestamp
which is managed by the Simulator. Since multiple events
could occur at the same timestep, we further sort by event type,
first executing UnplugEvents, then PluginEvents and finally
RecomputeEvents. At each timestep we execute all events left
in the queue which have timestamps on or prior to the current
timestep. After any event, the scheduling algorithm will be
called so that it can adapt to the new system state. Users are
free to create new events by extending the Event class.

IV. CHARGING ALGORITHMS
A. Interface

We begin by describing the algorithm interface. This inter-
face abstracts away the underlying infrastructure, whether that
be simulated or real, allowing us to use the same algorithm
implementation with both ACN-Sim and ACN-Live. This
means that algorithms can be thoroughly tested with ACN-
Sim before they are used on physical hardware. It also means
algorithms developed to work with ACN-Sim can work with
other platforms simply by extending the Interface class.
B. Defining an algorithm

To define an algorithm in ACN-Sim users only need
to extend the BaseAlgorithm class and write a single
schedule() function. This function takes in a list of EVs
which are currently active, meaning they are plugged in and
their energy demand has not been met, and returns a charging
schedule for each. This schedule takes the form of a dictionary
which maps station ids to a list of charging rates in amps.
Each entry in the list is valid for one time step beginning at the
current time. Algorithms have access to additional information
about the simulation through the Interface class, such as
the current timestep, infrastructure constraints, and allowable
pilot signals for each EVSE.

C. Included algorithms
ACN-Sim is packaged with many common online schedul-

ing algorithms which can be used as benchmarks.
1) Uncontrolled Charging: Uncontrolled Charging is the

most common ”algorithm” used in charging systems today. It
allows each EVSE to charge at its maximum allowable rate.
This algorithm does not factor in infrastructure constraints.

2) Round Robin: Round Robin (RR) is a simple algorithm
which attempts to equally share charging capacity among all
active EVs. To do this, it first creates a queue of all active EVs
then iterates over this queue. It first checks if it is feasible to
increment the rate of the current EV by one unit. If it is, the
rate is incremented and the EV is added back to the end of the
queue. If not, the charging rate of the EV is fixed, and it is not
returned to the queue. This continues until the queue of EVs
is empty. In this context a feasible charging rate is one which
does not cause to an infrastructure constraint to be violated
and is less than the maximum charging rate of the EVSE.

3) Sorting Based Algorithms: There are three sorting based
algorithms included in ACN-Sim: First-Come First-Served
(FCFS), Earliest-Deadline First (EDF), and Least-Laxity First
(LLF). Sorting based algorithms are commonly used in other
deadline scheduling tasks such as job scheduling in servers due
to their simplicity [19]. These algorithms work by first sorting
the active EVs by the given metric then processing them in
order. Each EV is assigned its maximum feasible charging rate
given that the assignments to all previous EVs are fixed. This
process continues until all EVs have been processed.

To determine if a given charging schedule is feasible, RR,
FCFS, EDF, and LLF use the is_feasible() method
included in the algorithm interface. This method accounts
for the full three-phase constraints of a network model. In
addition, all of these algorithms are compatible with the
constraints of the three EVSE models included with ACN-Sim.

V. SIMPLIFIED RESEARCH PIPELINE

ACN-Sim is designed to simplify the process of evaluating
new algorithms for smart EV charging. In this section we
demonstrate how ACN-Sim can simplify each step in a re-
searcher’s workflow as they evaluate the performance of their
algorithm against others proposed in the literature.

A. Implementing an algorithm
As described in Section IV, ACN-Sim greatly simplifies

the process turning an algorithm into code. In addition, since
algorithms can easily be shared, researchers do not need to
re-implement baseline algorithms to compare against.

B. Defining an experiment
Without ACN-Sim defining an experiment can be a difficult

process, as researchers need to model the charging system
they want to use and generate a realistic set of scenarios.
ACN-Sim simplifies this process by providing predefined
charging networks, as well as integrating with ACN-Data to
generate scenarios from real charging data. With these utilities,
researchers only need to define the start and end times of
the simulation, what site they want to simulate, and what
algorithm(s) they want to test.

C. Constructing and running a simulation
After an experiment has been defined, the process of con-

structing and running a simulation is as simple as constructing
a Simulator object then invoking its run() method. ACN-
Sim allows the researchers to achieve this task with only
two lines of code, versus the thousands necessary to build
a realistic simulator from scratch.

D. Analyzing results
After a simulation, researchers can analyze the results using

data stored in the Simulator. This data includes the pilot
signals sent to each EVSE and the actual charging rate of
the EV attached. The Simulator also has the option to
save the results of each call to the scheduling algorithm for
more in-depth analysis. To make analysis even easier, ACN-
Sim includes tools to perform common calculations such as
finding aggregate currents, measuring phase imbalances, and
calculating the proportion of energy demands met.

E. Sharing experiment
Reproduciblity is key to good science. However, when ex-

periments are run on in-house simulators and closed datasets,
it can be difficult for researchers to share their work and
verify the results of others. With ACN-Data and ACN-Sim
all researchers have access to the same dataset and simulation
environment, making it much easier to share experiments and
benchmark algorithms. For example, once an algorithm has
been implemented to work with the ACN-Sim framework,
it can be easily shared, either by contributing it to the
algorithms module or sharing the code separately. Other
researchers can then directly test against the original authors’
implementation the algorithm.

To make this process even easier, ACN-Sim works with
Google Colab, a free cloud-based service which hosts Jupyter
notebooks. Using this service, the researchers can share links
to their experiments which can be run in the cloud without
downloading or installing software locally. Other researchers
can then easily try the experiment themselves, even changing
parameters or trying different scenarios.

VI. CASE STUDIES

In these case studies we seek to demonstrate the type of
research which ACN-Sim enables. The code for these case
studies is available as a Jupyter notebook at [20].

Experiment 1: Unbalanced three-phase infrastructure

A key feature of ACN-Sim is its ability to simulate the
unbalanced three-phase electrical infrastructure common in
large charging systems. Currently, most charging algorithms
in the literature rely on constraints which assume single-
phase or balanced three-phase operation. We can use ACN-
Sim to demonstrate why these assumptions are insufficient for
practical charging systems.

For this experiment we use the LLF algorithm included in
ACN-Sim. We consider two cases. In the first, LLF considers a
simplified single-phase representation of the constraints in the
network. In the second, LLF uses the full three-phase system
model. The results of this experiment are shown in Fig. 5. In

Pr
im

ar
y

Si
de

Se

co
nd

ar
y

Si
de

Po

w
er

 (k
W

)

Three-Phase LLFSingle-Phase LLF

Li
ne

 C
ur

re
nt

s
(A

)
Ag

gr
eg

at
e

Fig. 5. Aggregate power draw and line-currents at the primary and secondary
side of the transformer when running single-phase and three-phase LLF
algorithms on the Caltech ACN with a 50 kW transformer capacity. Shading
in the lower plots denote each phase while the black dotted line denotes the
power/current limit. The experiment is based on on data from the Caltech
ACN on March 5, 2019 and uses a 5 minute timestep.

25 50 75 100 125 150
Transformer Capacity (kW)

20

40

60

80

100

En
er

gy
 D

el
iv

er
ed

 (%
)

EDF
FCFS
LLF
RR

Fig. 6. Comparison of percentage of energy delivered as a function of
transformer capacity. The simulation runs from March 1 through April 1,
2019 with a timestep of 5 minutes. To generate events we use ACN-Sim’s
integration with ACN-Data to get real charging sessions from the Caltech
ACN. We also use the included Caltech ACN charging network model with its
optional transformer_cap argument to limit the infrastructure capacity.

both cases, we evalaute the algorithms using the true three-
phase network model.

From Fig. 5 we can see that only considering single-
phase constraints can lead to significant constraint violations
in line currents. However, by designing an algorithm which
considers the full three-phase model, we are able to respect
these constraints. Note that because of phase unbalance, we
are not able to make use of the full 50 kW transformer capacity
while also respecting line limits.

Experiment 2: Constrained infrastructure comparison

ACN-Sim makes it easy to compare algorithms against one
another. Since it would be out of scope to introduce a new
algorithm, in this experiment we will compare ACN-Sim’s
baseline algorithms at various infrastructure capacities.

The results of this experiment are shown in Fig. 7. From
this plot we can see that with sufficient infrastructure capacity
all algorithms were able to meet 100% of demand. However,
we see that for moderately constrained infrastructure (20-75
kW), algorithms which account for user’s deadlines and energy
requests (EDF and LLF) out perform those that do not (RR
and FCFS). Moreover, when using EDF or LLF, only 50 kW
of capacity are needed to fully meet charging demands vs

Uncontrolled

Round Robin

FCFS

EDF

LLF

C
ha

rg
in

g
C

ur
re

nt
 (

A
)

10:00 12:00 14:00

Fig. 7. Comparison of charging profiles for one EV on March 5, 2019 with
a 50 kW transformer capacity.

75 kW for RR and FCFS. Interestingly, for extremely low
infrastructure capacities, RR deliverers more energy than the
other algorithms. This is because RR is able to better utilize
the available capacity by balancing between phases.

ACN-Sim also allows us to examine the charging profile
of individual EVs as shown in Fig. 6. From this plot we can
see that FCFS behaves very similarly to Uncontrolled, but is
delayed as the EV must wait its turn in the queue. In the
case of EDF and LLF we see that charging can be interrupted
when EVs with earlier deadlines arrive (EDF) or when the
laxity of the EV increases as it charges (LLF). As we can see
from Fig. 6, LLF can cause oscillations in the charging profile.
This is because charging the EV at the current timestep can
cause its laxity to increase resulting in a lower queue position
in the next timestep. The behavior of RR is quite different, as
the EV charges constantly, but at a rate below its maximum
as congestion in the system necessitates sharing of charging
capacity. We can also note that Uncontrolled charges the EV
the fastest, followed by FCFS, LLF, EDF and finally RR.

VII. CONCLUSIONS AND FUTURE WORK

In this work we present ACN-Sim, a data-driven simulator
designed to aid the development of practical online scheduling
algorithms for EV charging. This tool significantly reduces
the software engineering burden on researchers and helps
to expose them to practical issues present in real charging
systems. ACN-Sim also makes it easier for researchers to
share their experiment code, helping to improve transparency
and code reuse in the community. Finally, ACN-Sim integrates
with the Adaptive Charging Network Research Portal, a larger
suite of tools which includes a database of real charging
sessions and a framework for field testing algorithms.

ACN-Sim will continue to grow to meet the needs of the
community including new models of systems components and
charging networks. We also plan to develop a suite of test
cases (include networks and scenarios) which can be used as
a common evaluation set for algorithms. Moreover, we plan
to integrate ACN-Sim with other tools such as OpenAI Gym
and GridLab-D. OpenAI Gym is a toolkit for developing and
evaluating reinforcement learning (RL) algorithms [21]. By

integrating this with ACN-Sim we will allow RL researchers
to more easily apply their techniques to the problem of smart
EV charging. In addition, integration with GridLab-D will let
researchers explore grid level effects of smart EV charging
and evaluate algorithms for providing grid services.

REFERENCES

[1] T. Bunsen, P. Cazzola, M. Gorner, L. Paoli, S. Scheffer, R. Schuitmaker,
J. Tattini, and J. Teter, “Global EV Outlook 2018: Towards Cross-Modal
Electrification,” 2018.

[2] H. Engle, R. Hensley, S. Knupfer, and S. Sahdev,
“Charging Ahead: Electric-Vehicle Infrastructure Demand.”
https://www.mckinsey.com/industries/automotive-and-assembly/
our-insights/charging-ahead-electric-vehicle-infrastructure-demand.
Accessed: 2019-05-03.

[3] G. Lee, T. Lee, Z. Low, S. H. Low, and C. Ortega, “Adaptive Charging
Network for Electric Vehicles,” in 2016 IEEE Global Conference on
Signal and Information Processing, Dec. 2016.

[4] Z. J. Lee, D. Chang, C. Jin, G. S. Lee, R. Lee, T. Lee, and S. H. Low,
“Large-Scale Adaptive Electric Vehicle Charging,” in IEEE International
Conference on Communications, Control, and Computing Technologies
for Smart Grids, Oct. 2018.

[5] Z. J. Lee, T. Li, and S. H. Low, “ACN-Data: Analysis and Applica-
tions of an Open EV Charging Dataset,” in Proceedings of the Tenth
International Conference on Future Energy Systems, e-Energy ’19, June
2019.

[6] Z. J. Lee and D. Johansson, “acnportal.” https://github.com/zach401/
acnportal, Apr. 2019.

[7] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,” vol. 26, no. 1, pp. 12–19.

[8] L. Thurner, A. Scheidler, F. Schfer, J. Menke, J. Dollichon, F. Meier,
S. Meinecke, and M. Braun, “PandapowerAn Open-Source Python Tool
for Convenient Modeling, Analysis, and Optimization of Electric Power
Systems,” vol. 33, no. 6, pp. 6510–6521.

[9] D. P. Chassin, J. C. Fuller, and N. Djilali, “GridLAB-D: An agent-based
simulation framework for smart grids,” Journal of Applied Mathematics,
vol. 2014, 2014.

[10] D. Montenegro, R. Dugan, R. Henry, T. McDermott, and W. Sunderm,
“Opendss - epri distribution system simulator.” https://sourceforge.net/
projects/electricdss/.

[11] “V2G-Sim,” 2019. Available: http://v2gsim.lbl.gov/home.
[12] S. Saxena, J. MacDonald, and S. Moura, “Charging ahead on the

transition to electric vehicles with standard 120 v wall outlets,” Applied
energy, vol. 157, pp. 720–728, 2015.

[13] S. Saxena, C. Le Floch, J. MacDonald, and S. Moura, “Quantifying
ev battery end-of-life through analysis of travel needs with vehicle
powertrain models,” Journal of Power Sources, vol. 282, pp. 265–276,
2015.

[14] S. Saxena, J. MacDonald, D. Black, and S. Kiliccote, “Quantifying the
flexibility for electric vehicles to offer demand response to reduce grid
impacts without compromising individual driver mobility needs,” tech.
rep., SAE Technical Paper, 2015.

[15] J. Coignard, S. Saxena, J. Greenblatt, and D. Wang, “Clean vehicles as
an enabler for a clean electricity grid,” Environmental Research Letters,
vol. 13, no. 5, p. 054031, 2018.

[16] E. S. Rigas, S. Karapostolakis, N. Bassiliades, and S. D. Ramchurn,
“EVLibSim: A tool for the simulation of electric vehicles charging
stations using the EVLib library,” Simulation Modelling Practice and
Theory, vol. 87, pp. 99–119, Sept. 2018.

[17] SAE, “SAE Electric Vehicle and Plug in Hybrid Electric Vehicle
Conductive Charge Coupler J1772 201710,” 2017.

[18] Q. Wang, X. Liu, J. Du, and F. Kong, “Smart Charging for Electric
Vehicles: A Survey From the Algorithmic Perspective,” IEEE Commu-
nications Surveys & Tutorials, vol. 18, no. 2, pp. 1500–1517, 2016.

[19] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo,
Deadline scheduling for real-time systems: EDF and related algorithms,
vol. 460. Springer Science & Business Media, 2012.

[20] Z. J. Lee, “ACN-Sim-Demo.” https://github.com/zach401/
ACN-Sim-Demo, May 2019.

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint
arXiv:1606.01540, 2016.

