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ABSTRACT

We are releasing ACN-Data, a dynamic dataset of workplace EV

charging which currently includes over 30,000 sessions with more

added daily. In this paper we describe the dataset, as well as some

interesting user behavior it exhibits. To demonstrate the usefulness

of the dataset, we present three examples, learning and predicting

user behavior using Gaussian mixture models, optimally sizing

on-site solar generation for adaptive electric vehicle charging, and

using workplace charging to smooth the net demand Duck Curve.
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1 INTRODUCTION

Electric vehicles (EVs) have the potential to drastically reduce the

carbon-footprint of the transportation sector. However, the growth

of EVs in recent years has raised the question of how to best charge

these massive loads. This has motivated studies on the impact of

EV charging on the grid [8ś10, 18, 28, 29]. Other researchers have

focused on the potential of EVs as a controllable load, proposing

algorithms to reduce demand variability [4, 20, 30], minimize costs

when subject to time-varying prices [11, 20, 30], take advantage of

intermittent renewable resources [1, 12, 22, 31, 33], ormeet charging

demands using limited infrastructure capacity [21, 23, 26]. While

some of these studies, for example [10, 18, 20ś23, 26, 32], have had

access to real EV data to analyze their proposed algorithms, many
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others have had to rely on distributions derived from data collected

from internal combustion engine (ICE) vehicles [9, 11, 12, 29ś31]

or assumed behaviors [1, 4, 8, 28, 33]. In addition, since all of these

studies utilize diferent data sources, it can be diicult to compare

one algorithm or approach against another.

There is thus a need for real EV charging data in the community

in order to evaluate algorithms and study driver behavior. To meet

this need we are releasing ACN-Data, a publicly-available dataset

for EV charging research. This dataset currently consists of over

30,000 charging sessions collected from two workplace charging

sites in California managed by PowerFlex, a smart EV charging

startup. We hope that this dataset will be useful to the research

community for evaluating new algorithms, understanding users’

behavior, and informing the design of the next generation of smart

EV charging systems.

A unique aspect of this dataset is that it is continually updated

with sessions being uploaded daily.1 This allows researchers to

quickly gather data and understand trends in EV charging as they

happen. While our current dataset includes only two sites, the

startup with which we are partnering to collect data, PowerFlex,

currently has over 60 sites around the country, and we plan to ex-

pand our database to new sites in the future. The dataset is available

at https://ev.caltech.edu/dataset.

ACN-Data is not the irst EV charging dataset studied by the

academic community. A dataset collected by a Dutch smart EV

charging provider ElaadNL has been used by [13] to examine ca-

pacity for demand response, [15] to build statistical models, and

[25] to develop indicators which can be used to plan, and evaluate

EV charging infrastructure. Similarly, [5] uses data collected from

a Chinese charging system to investigate correlations in charging

session parameters and [7, 32] use data collected from a charging

network in Los Angeles to predict user behavior and evaluate pro-

posed scheduling algorithms. Another study, My Electric Avenue

[10], collected data from residential EV charging to examine its

efect on the distribution grid. However, it can be diicult for re-

searchers to access these datasets. The Pecan Street Dataport [19]

is an exception, as it is publicly available for academic research.

However, this dataset only includes residential EV charging data, so

it is complementary to ACN-Data’s focus on workplace charging.

Our major contributions are as follows. 1) We describe the ACN-

Data dataset and provide context which is important for its use. 2)

We use this dataset to understand user behavior and lexibility in

large-scale workplace charging. 3) We demonstrate that Gaussian

mixture models can be used to learn the underlying distribution

of charging session parameters at both the population and the

individual level. 4) We show that prediction of session duration and

energy demand of each user upon their arrival using the learned

1To protect user privacy we institute a two-week delay before data is released.

https://doi.org/10.1145/3307772.3328313
https://doi.org/10.1145/3307772.3328313


e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA Zachary J. Lee, Tongxin Li, and Steven H. Low

May June July Aug. Sept. Oct. Nov. Dec.
0

1000

2000

3000

4000

N
u
m
b
er

of
S
es
si
on

s

Caltech Claimed

Caltech Unclaimed

JPL Claimed

JPL Unclaimed

Figure 1: Number of charging sessions collected per month

at each site for claimed and unclaimed sessions.

distribution is much more reliable than user input. 5) We use the

dataset to formulate a novel data-driven approach to optimal sizing

of on-site solar systems for adaptive EV charging. 6) We illustrate,

using models derived from this dataset, the potential of adaptive

EV charging to smooth the Duck Curve of net demand.

2 THE ACN-DATA DATASET

In this section we describe the dataset and how it is collected. More

details on the charging facility and adaptive algorithm can be found

in [21, 23].

2.1 Adaptive Charging Network (ACN)

ACN-Data was collected from two Adaptive Charging Networks

located in California. The ACN on the Caltech campus is in a park-

ing garage and has 54 EVSEs (Electric Vehicle Supply Equipment or

charging stations) along with a 50 kW dc fast charger. The Caltech

ACN is open to the public and is often used by non-Caltech drivers.

Since the parking garage is near the campus gym, many drivers

charge their EVs while working out in the morning or evening.

JPL’s ACN includes 52 EVSEs in a parking garage. In contrast with

Caltech, access to the JPL campus is restricted and only employees

are able to use the charging system. The JPL site is representative of

workplace charging while Caltech is a hybrid between workplace

and public use charging. EV penetration is also quite high at JPL.

This leads to high utilization of the EVSEs as well as an ad-hoc

program where drivers move their EVs after they have inished

charging to free up plugs for other drivers. In both cases, to re-

duce capital costs, infrastructure elements such as transformers

have been oversubscribed. The current architecture of the ACN for

Caltech is described in [23] though both systems have a similar

structure.

An adaptive scheduling algorithm is used to deliver each dri-

ver’s requested energy prior to her stated departure time without

exceeding the infrastructure capacity. We now describe an oline

version of the algorithm that assumes full knowledge of all EV

arrival times, departure times, and energy demands in advance. The

formulation is used in later sections of this paper. The algorithm

that is implemented in the actual ACNs is an online version in the

form of model predictive control as shown in [23].

Let V be the set of all EVs over an optimization horizon T :=

{1, . . . ,T }. Each EV i ∈ V is described by a tuple (ai , ei , di , r̄i )

where ai is the EV’s arrival time relative to the start of the opti-

mization horizon, ei is its energy demand, di is the duration of the

session, and r̄i is themaximum charging rate for EV i . The charging

rates for each EV in each period solve the following problem:

SCH(V,U ,R) : min
r̂

U (r̂ ) (1a)

s.t. r̂ ∈ R (1b)

where the optimization variable r̂ := (r̂i (1), . . . , r̂i (T ), i ∈ V) de-

ines the scheduled charging rates of each EV over the optimization

horizon T . The utility function U (r ) encodes the operator’s objec-

tives and the feasible set R the various constraints.

To illustrate, we use the objective

U (r ) :=
∑
t ∈T
i ∈V

(t −T ) ri (t)

to encourage EVs to inish charging as quickly as possible, freeing

up capacity for future arrivals. This objective, along with the regu-

larization terms described in [23], is currently used in the ACNs at

Caltech and JPL. Our feasible set R takes the form

0 ≤ ri (t) ≤ r̄i ai ≤ t < ai + di , i ∈ V (2a)

ri (t) = 0 t < ai , t ≥ ai + di , i ∈ V (2b)

di−1∑
t=ai

ri (t) ≤ ei i ∈ V (2c)

fj (r1(t), ..., rN (t)) ≤ Ij (t) t ∈ T , j ∈ I (2d)

Constraints (2a) ensure that charging rates are nonnegative and

below their maximum r̄i (t); (2b) ensure that an EV does not charge

before its arrival or after its departure time; (2c) limits the total

energy delivered to EV i to at most ei ; and (2d) enforce a set of

given infrastructure limits Ij (t) indexed by j ∈ I.

Since the utility function is strictly decreasing in every element

of r , if it is feasible to meet all EV’s energy demands, then constraint

(2c) will be tight. In general, it is possible that the energy delivered

may not reach the user’s requested energy due to their battery

becoming full or congestion in the system.

2.2 Data Collected

The ACN framework allows us to collect detailed data about each

charging session which occurs in the system. Table 1 describes

some of the relevant data ields we collect. To obtain data directly

from users, we use a mobile application. The driver irst scans a QR

code on the EVSE which allows us to associate the driver with a

particular charging session. The driver is then able to input their

estimated departure time and requested energy. We refer to this as

user input data. When a user does not use the mobile application,

default values for energy requested and duration are assumed and

no user identiier is attached to the session. We refer to sessions

with an associated user input as claimed and those without as

unclaimed.

In this paper we will focus on the 3-tuple (ai ,di , ei ) in the col-

lected data for both user input and the actual measured behavior.

Figure 1 displays the number of sessions collected from each site

per month as well as whether these sessions were tagged with a
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Figure 2: System utilization for the Caltech (left) and JPL (right) for the period from Sept. 1, 2018 to Jan. 1, 2018. Policy changes

for claimed and unclaimed sessions are also shown. For claimed sessions, users specify their energy demand and session

duration. For unclaimed sessions, default parameters are used, which have changed over time. Prior to Sept. 1, unclaimed

sessions at Caltech received 42, 21, or 14 kWh over 12 hours depending on the speciic EVSE. Unclaimed sessions have always

been free. *While JPL has always required payment, some EVSEs were not able to be claimed prior to Nov. 1, so generous default parameters

were instituted.

Table 1: Selected data ields in ACN-Data.

Field Description

connectionTime Time when the user plugs in.

doneChargingTime Time of the last non-zero charging rate.

disconnectTime Time when the user unplugs.

kWhDelivered Measured Energy Delivered

siteID Identiier of the site where the session took place.

stationID Unique identiier of the EVSE.

sessionID Unique identiier for the session.

timezone Timezone for the site.

pilotSignal Time series of pilot signals during the session.

chargingCurrent Time series of actual charging current of the EV.

userID* Unique identiier of the user.

requestedDeparture* Estimated time of departure.

kWhRequested* Estimated energy demand.

*Field not available for every session.

user’s input, i.e. claimed. Claimed sessions are useful for studying

individual user behavior.

3 UNDERSTANDING USER BEHAVIOR

3.1 System Utilization

Figure 2 shows system utilization, speciically the number of ses-

sions served and amount of energy delivered each day, from Sep-

tember through December 2018, together with pricing information

and default parameters for unclaimed sessions.

3.1.1 Weekday vs. weekend charging. Figure 2 shows that both

sites display a cyclic usage pattern with much higher utilization

during weekdays than on weekends, as expected for workplace

charging. Furthermore, Caltech, being a university and an open

campus, has non-trivial usage on weekends. In contrast, JPL, as a

closed campus, has next to no charging on weekends and holidays.

3.1.2 Free vs. paid charging. The data conirms the diference

between paid and free charging facilities. During the irst 2.5 years

of operation the Caltech ACN was free for drivers. However, begin-

ning Nov. 1, 2018, a fee of $0.12 / kWh was imposed. We can see

this date clearly from Figure 2, as both the number of session per

day and daily energy delivered decreased signiicantly. Because of

an issue with site coniguration, approximately half of the EVSEs

at JPL were free prior to Nov. 1, 2018. However at JPL we do not

see a large decrease in utilization in terms of number of sessions

or energy delivered after Nov. 1. This is likely because demand for

charging is high enough to overshadow any price sensitivity.

3.2 Arrivals and Departures

Figure 3 shows the distributions of arrivals to and departures for

both sites. For Caltech we plot the distributions for weekends and

weekdays, as well as for free and paid charging separately.

3.2.1 Efects of free vs. paid charging. From the igure the shape

of the distributions are similar before and after paid charging was

implemented. We note two key diferences, however, in weekday

charging between free and paid periods. First, the second peak

around 6 pm vanishes. We attribute this to a decrease in community

usage of the Caltech ACN after its cost became comparable to at-

home charging. Second, the peak in arrivals (departures) around 8

am (5 pm) increases. This is expected as instituting paid charging

has reduced community usage in the evening which leads to a

higher proportion of users displaying standard work schedules.

3.2.2 Weekday distribution. The igure shows that the weekday

arrival distribution has a morning peak at both sites. For conven-

tional charging systems, these peaks necessitate a larger infrastruc-

ture capacity and lead to higher demand charges. In addition, as

EVs adoption grows, these morning spikes in demand could prove

challenging for utilities as well. As expected, departures are analo-

gous to arrivals. They begin to increase as the workday ends, with
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Figure 3: Distribution of arrivals and departures in each

ACN. Bars denote the mean distribution over the period of

May 1, 2018 to Jan. 1, 2019 and whiskers denote the irst and

third quartiles. For Caltech we diferentiate between paid

and free periods and weekdays versus weekends. For JPL

since free charging was only ofered at a subset of EVSEs

and weekend usages is extremely low, we plot only a single

distribution for weekdays.

peaks in the period 5-6 pm at both Caltech and JPL. Departures

at JPL tend to begin earlier, which is consistent with the earlier

arrival times while departures at Caltech tend to stretch into the

night owing to the heterogeneity of individual schedules as well as

later arrivals.

3.2.3 Weekend distribution. Since the Caltech ACN is open to

the public and is located on a university campus, it receives use

on the weekends. From Figure 3 arrivals and departures are much

more uniform on weekends for both the unpaid and paid periods.

This uniformity is probably due to the aggregation of many highly

heterogeneous weekend schedules.

3.3 Driver and System Flexibility

3.3.1 Driver laxity. There are diferent notions of driver laxity,

and we use the following deinition that has been applied to EV

charging [26]. The initial laxity of an EV charging session i is

deined as

LAX(i) = di −
ei

r̄i

LAX(i) = 0 means that EV i must be charged at its maximum rate r̄i
over the entire duration di of its session in order to meet its energy

demand ei . A higher value of LAX(i)means there is more lexibility
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Figure 5: Capacity required to fulill a given proportion of

the days in our dataset for Caltech (top) and JPL (bottom).

in satisfying its energy demand. Figure 4 shows the distribution of

initial laxities in our dataset. It conirms that, for weekdays, most

EVs display high laxity. On weekends laxity tends to be lower as

drivers tend to want to get charged and get on with their day.

3.3.2 Minimum system capacity. One way to quantify the aggre-

gate lexibility of a group of EVs is the minimum system capacity

needed to meet all their charging demands. A smaller system ca-

pacity requires a lower capital investment and operating cost for a

charging operator. To calculate the minimum system capacity we

solve SCH(V , Ucap, R̂) for the optimal charging rates r̂∗, for each

day in our dataset where V is the set of all EVs using the charging

system in a day,

Ucap(r ) := max
t

∑
i ∈V

ri (t)
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data for Caltech during training period.

and R̂ is equivalent to (2) except that (2c) is strengthened to equal-

ity.2 For simplicity, we do not consider any infrastructure con-

straints (2d) in R̂. The distribution of the minimum system capacity

Ucap(r̂
∗) per day in our dataset is plotted in Figure 5. It shows that

we would have been able to meet the demand for 100% of days in

our dataset with just 60 kW of capacity for Caltech and 84 kW for

JPL. Meanwhile conventional uncontrolled systems of the same ca-

pacity would only be able to meet demand on 22% and 38% of days

respectively. For reference Caltech has an actual system capacity

of 150 kW and JPL has 195 kW.

4 LEARNING USER BEHAVIOR

In this section, we illustrate how to learn the underlying joint

distribution of arrival time, session duration, and energy delivered

using Gaussian mixture models (GMMs) (e.g., [14, 24]). We then

use these GMMs to predict user behavior (Section 5), optimally size

onsite solar for adaptive EV charging (Section 6), and control EV

charging to smooth the duck curve (Section 7).

4.1 Problem Formulation

We utilize the GMM as a second-order approximation to the un-

derlying distribution. Our dataset can be modeled as follows to it

a GMM. Consider a dataset X consisting of N charging sessions.

The data for each session i = 1, . . . ,N , is represented by a triple

xi = (ai ,di , ei ) in R
3 where ai denotes the arrival time, di denotes

the duration and ei is the total energy (in kWh) delivered. The

data point Xi (we use capital letters for random variables) are in-

dependently and identically distributed (i.i.d.) according to some

unknown distribution. In practice, each driver in a workplace en-

vironment exhibits only a few regular patterns. For example, on

weekdays, a driver may typically arrive at 8 am and leave around

2This is necessary because Ucap is not strictly decreasing in r . We are only able to
strengthen (2c) to equality when it is feasible to meet all energy demands which is the
case here since we use actual delivered energy.

6 pm, though her actual arrival and departure times may be ran-

domly perturbed around their typical values. On weekends, driver

behavior may change such that the same driver may come around

noon. We hence assume that drivers have initely many behavior

proiles. Therefore, let K be the number of typical proiles denoted

by µ1, . . . , µK .
3 Each data point Xi can be regarded a corrupted

version of a typical proile with a certain probability. Deine a latent

variable Yi ≡ k if and only if Xi is corrupted from µk . Moreover, by

the i.i.d. assumption, each incoming EV has an identical probability

πk taking µk , i.e., πk := P (Yi = k) for i = 1, . . . ,N , k = 1, . . . ,K .

Conditioned on Yi = k , the diference Xi − µk that the proile Xi
deviates from the typical proile µk can be regarded as Gaussian

noise. In this manner, assuming Yi = k , we let Xi ∼ N (µk , Σk ) be

a Gaussian random variable with mean µk and covariance matrix

Σk . To estimate the underlying distribution and approximate it

as a mixture of Gaussians, it suices to estimate the parameters

θ = (πk , µk , Σk )
K
k=1

. The probability density of observing a data

point x can then be approximated using the learned GMM as

p (x |θ ) =

K∑
k=1

πk

exp

(
− ||x − µk | |

2
Σ
−1
k

/2

)
√
(2π )3det (Σk )

4.2 Population and Individual-level GMMs

We train GMMs based on a training dataset XTrain and predict

the charging duration and energy delivered for drivers in a setU.

The results are tested on a corresponding testing dataset XTest. As

illustrated in Figure 1, the training data collected at both Caltech

and JPL can be divided into two parts: user-claimed data XC and

unclaimed data XU.

This motivates us to study two diferent approaches. The irst

approach generates a population-level GMM (P-GMM) based on

the overall training data XTrain = XC
⋃
XU. However, users can

have distinctive charging behaviors. To achieve better prediction

accuracy, we take advantage of the user-claimed data and predict

the charging duration and energy delivered for each individual

user. In the second approach, the claimed data can be partitioned

into a collection of smaller datasets consisting of the charging

information of each user in U. We write XC =
⋃
j ∈U Xj . We can

then train individual-level GMMs (I-GMM) for each user j ∈ U by

ine tuning the weights of the components of the P-GMM with data

from each of the users to arrive at a inal model for each of them.

4.3 Distribution Learned by P-GMM

To evaluate how well our learned population-level GMM its the

underlying distribution, we gather 100, 000 samples from a P-GMM

trained on data from Caltech collected prior to Sep. 1, 2018. We

then plot in Figure 6 the distribution of these samples along with

the empirical distribution from our training set. We choose to plot

departure time instead of duration directly as this demonstrates that

our model has learned not only the distribution of session duration

but also the correlation between arrival time and duration. We see

that in all cases, our learned distribution matches the empirical

3We assume the number K of components is known. In our experiments in Section 4,
grid search [27] and cross-validation is used to ind the best number of components.
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Figure 7: Prediction errors for Caltech (left two columns) and JPL (right two columns) for training dataset sizes ranging from 30

days to 90 days in the past. As a benchmark, we consider simply taking themean of each user’s prior behavior. For comparison,

we also include the errors of user inputs. The results are measured by the mean absolute error (MAE) deined in (5).

distribution well. We next present three applications of the ACN-

Data dataset and the learned distribution in Sections 5 to 7.

5 PREDICTING USER BEHAVIOR

In this section, we use the GMM that we have learned from the

ACN-Data dataset to predict a user’s departure time and the as-

sociated energy consumption based on their known arrival time.

Despite recent advances in arrival time based prediction via ker-

nel density estimation [5, 7, 32], simple empirical predictions are

commonly used in practical EV charging systems. For example, the

ACNs from which this data was collected use user inputs directly in

the scheduling problem [23], while other charging systems simply

take the average of the past behavior as a prediction. Our data,

however, shows that user input can be quite unreliable, partially

because of a lack of incentives for users to provide accurate pre-

dictions. We demonstrate that the predictions can be more precise

using simple probabilistic models.

5.1 Calculating Arrival Time-based Predictions

Let U denote the set of users. Suppose a convergent solution

θ (j) = (π
(j)

k
, µ

(j)

k
, Σ

(j)

k
)K
k=1

is obtained for user j ∈ U where µ
(j)

k
:=

(a
(j)

k
,d

(j)

k
, e

(j)

k
) and the user’s arrival time is known a priori as α (j).

For the sake of completeness, we present the following formulas

used for predicting the duration δ (j) and energy to be delivered ε(j)

as conditional Gaussians of the user j ∈ U:

δ (j) =

K∑
k=1

π
(j)

k

©­«
d
(j)

k
+ (α (j) − a

(j)

k
)
Σ
(j)

k
(1, 2)

Σ
(j)

k
(1, 1)

ª®¬
(3)

ε(j) =

K∑
k=1

π
(j)

k

©­«
e
(j)

k
+ (α (j) − a

(j)

k
)
Σ
(j)

k
(1, 3)

Σ
(j)

k
(1, 1)

ª®¬
(4)

where Σ
(j)

k
(1, 1), Σ

(j)

k
(1, 2) and Σ

(j)

k
(1, 3) are the irst, second and

third entries in the irst column (or row) of the covariance matrix

Σ
(j)

k
respectively. Denoting by p(·|µ,σ 2) the probability density for

a normal distribution with mean µ and variance σ 2, the modiied

weights conditioned on arrival time in (3) and (4) above are

πk :=
p
(
α (j) |a

(j)

k
, Σ

(j)

k
(1, 1)

)
∑K
k=1

p
(
α (j) |a

(j)

k
, Σ

(j)

k
(1, 1)

)

5.2 Error Metrics

We consider both absolute error and percentage error when evalu-

ating duration and energy predictions.

5.2.1 Mean absolute error. Recall thatU is the set of all users in

a testing dataset XTest. Let Aj denote the set of charging sessions

for user j ∈ U. The Mean Absolute Error (MAE) is deined in (5)

to assess the overall deviation of the duration and energy consump-

tion. For a testing dataset XTest = {(ai, j ,di, j , ei, j )}j ∈U,i ∈Aj
, the

corresponding MAEs for duration and energy are represented by

MAE(d) and MAE(e) with

MAE(x) :=
∑
j ∈U

1

|U|

∑
i ∈Aj

1

|A|j

��xi, j − x̂i, j
�� (5)

where x̂i, j is the estimate of xi, j and x = d or e .

5.2.2 Symmetric mean absolute percentage error. The Symmetric

Mean Absolute Percentage Error (SMAPE) in (6) is commonly used

(for example, see [7]) to avoid skewing the overall error by the data

points wherein the duration and energy consumption take small

values. The corresponding SMAPEs for duration and energy are

represented by SMAPE(d) and SMAPE(e) with

SMAPE(x) :=
∑
j ∈U

1

|U|

∑
i ∈Aj

1

|A|j

����xi, j − x̂i, j

xi, j + x̂i, j

���� × 100% (6)
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Table 2: SMAPEs for Caltech and JPL datasets.

Caltech I-GMM P-GMM Mean User Input

SMAPE(d)% 15.8543 16.6313 20.4432 25.8093

SMAPE(e)% 14.4273 17.2927 15.9275 27.5523

JPL I-GMM P-GMM Mean User Input

SMAPE(d)% 12.2500 12.5079 15.8985 18.5994

SMAPE(e)% 12.7318 13.6863 13.3014 26.8769

5.3 Results and Discussion

5.3.1 Experimental setup. In Figure 7, we report MAE(d) and

MAE(e) for I-GMM and P-GMM on Caltech dataset as a function

of the look back period which deines the length of the training set.

Users with larger than 20 sessions during Nov. 1, 2018 and Jan. 1,

2019 are included inU and tested. Note that the size of the training

data may not be proportional to the length of periods since in gen-

eral there is less claimed session data early in the dataset as shown

in Figure 3. The 30-day testing data is collected from Dec. 1, 2018 to

Jan. 1, 2019. We study the behavior of prediction accuracy with dif-

ferent training data sizes by training the GMMs with data collected

from ive time intervals ending on Nov. 30, 2018 and starting on Sep.

1, 2018, Sep. 15, 2018, Oct. 1, 2018, Oct. 15, 2018 and Nov. 1, 2018

respectively. The GMM components are initialized using k-means

clustering as implemented by the Scikit Learn GMM package [27].

Since it is not deterministic, we repeat this initialization 25 times

and keep the model with the highest log-likelihood on the training

dataset. Grid search and cross validation [27] are used to ind the

best number of components for each GMM.

5.3.2 Observations. As observed from Figure 7, for the JPL dataset

with testing data obtained from Dec. 1, 2018 to Jan. 1, 2019, the 60-

day training data gives the best overall performance. This coincides

with our intuition that user behavior changes over time and there is

a trade-of between data quality and size. The Caltech dataset also

displays this trade-of; however, the best performance was found

for only a 30-day training set. This is likely because there was a

transition from free to paid charging on Nov. 1, which meant that

data prior to that date had very diferent properties.

Hence, for the JPL dataset, we ix the training data as the one

collected from Oct. 1, 2018 to Dec. 1, 2018 and show the scatterings

of SMAPEs for each session in the testing data (from Dec. 1, 2018

to Jan. 1, 2019) in Figure 8. The SMAPEs are concentrated on small

values with a few outliers and high-quality duration prediction has

a positive correlation with high-quality energy prediction. As a

comparison, user input SMAPEs, shown as Xs, are much worse.

Table 2 shows the average SMAPEs for the various methods

tested. For Caltech and JPL, we display the results using the 30 and

60-day training data respectively. For reference we also calculate

the error of two additional ways to predict user parameters: 1) we

use the mean of the training data Xj as our prediction for each

user, 2) we treat the user input data directly as the prediction. Note

that to account for stochasticity in the GMM training process, the

results in Figure 7 and Table 2 are obtained via 50 Monte Carlo

simulations.

Figure 8: Correlation between SMAPE(d) and SMAPE(e) and

their marginal distributions for the JPL dataset. Kernel den-

sity estimation is used to approximate the joint distribution

of the SMAPEs for predicted duration and energy which is

shown as grey shading. The blue crosses represent the cor-

responding user input SMAPEs (for I-GMM) with respect to

each charging session in the testing data set XTest.

5.3.3 Implications. EV users need incentives to provide more

accurate predictions. As shown in Figures 7, Figure 8 and Table 2,

user input data conspicuously gives the worst overall prediction.

However, in some commercial EV charging companies, e.g., Power-

Flex, user input data is used as the direct input for the scheduling

and pricing algorithms. Therefore, signiicant improvements can be

made in the future by leveraging tools from statistics and machine

learning to better predict user behaviors, e.g., using GMMs. In addi-

tion, we ind that when predicting user behavior there is a trade-of

between between training data quantity and quality caused by

changing user behavior over time which must be considered.

6 WORKPLACE SOLAR CHARGING

While many studies have addressed the problem of scheduling EV

charging to utilize on-site solar generation, it is generally assumed

that solar capacity is ixed [1, 22, 31, 33]. In this section, we use

the ACN-Data dataset, as well as our learned distributions, to

address the separate problem of how historical data can be used

to optimally size on-site solar generation in order to minimize the

cost of workplace EV charging.

6.1 Problem Formulation

Assuming that at operation time EVs will be charged optimally, we

can formulate the problem of inding the optimal solar capacity,

α , of an on-site solar installation as minimizing the following cost
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function, given a set V of EVs:

c∗(α ,V) := SCH(V,Usol, R̂) (7)

where the total charging cost,Usol is deined as:

Usol := cs
∑
t ∈T

αs(t) +
∑
t ∈T

ce (t)

[∑
i ∈V

ri (t) − αs(t)

]
+

+ ∆ ·max
t ∈T

∑
i ∈V

[∑
i ∈V

ri (t) − αs(t)

]
+

(8)

and R̂ is deined in Section 3.3.2. In (8), s(t) is a solar generation

proile found by normalizing the time series of solar production over

a period by the capacity of the system which generated it. cs is the

levelized cost of energy (LCOE) for the solar array which accounts

for capital and operating costs. LCOE is calculated assuming that

all solar generated is utilized, and therefore we are charged for all

solar production regardless of if it is used to charge EVs or not.4

ce (t) is the possibly time-varying electricity cost from the grid and

∆ is the demand charge levied by the utility based on peak usage

throughout a billing period. Here [a]+ := max{a, 0}.

Given that EV charging will be scheduled optimally according

to (7), the optimal solar capacity to install is then:

α∗ := argmin
α

❊V [c∗(α ,V)]

Hence the optimal solar capacity α∗ minimizes the expected total

cost where the expectation is taken over the random setV of EV

arrivals. To compute α∗ we estimate the expected cost using the

empirical mean of scenarios {V1, ...,VS } sampled from the learned

distribution:

❊V [c∗(α ,V)] ≈
1

S

S∑
j=1

c∗(α ,Vj ) (9)

6.2 Case Studies

6.2.1 Computing optimal solar capacity α∗. We irst compute

the optimal solar capacity using our purposed method for a single

month, then evaluate its performance based on actual data.

Consider the Caltech ACN during the month of September. We

adopt the Southern California Edison (SCE) time-of-use (TOU) rate

schedule [6] for separately metered EV charging systems between

20-500 kW which is shown in Table 3 (SCE considers September a

summer month). We use a LCOE for solar of $0.08 / kWh which cor-

responds to NREL’s SunShot 2020 goal for commercial PV systems

and which was met in 2017 [17]. To produce a realistic solar proile

s(t), we use NREL’s SAM tool and the National Solar Radiation

Database (NSRD) to estimate solar output for a typical meteorolog-

ical year at Caltech [16]. For this study we set the length of each

discrete time interval in the optimization to be 15 min.

We generate 100 EV charging scenarios using the learned GMMs,

each 1 month long. The GMMs are trained, one for weekdays and

one for weekends, using data up to September 1 as described in

Section 5. Since the GMMs do not model the number of arrivals each

day, we it a separate Gaussian to predict the number of arrivals

4In many cases excess solar generation could be used by other loads or sold back to
the grid. However, in this example we consider the simple case where the PV system
is connected only to the EVSEs and no net metering is ofered.

Table 3: SCE TOU Rate Schedule for EV Charging

Summer Rates Winter Rates

On-Peak $0.25 / kWh $0.08 / kWh

Mid-Peak $0.09 / kWh $0.08 / kWh

Of-Peak $0.06 / kWh $0.07 / kWh

Demand Charge $15.48 / kW / month

Table 4: Evaluating Planned Solar Capacity for Caltech

Data
Solar

Capacity

Percent

Solar

Total

Cost
Savings

Planning Synthetic 76 kW 57.5% $2,156 -

Evaluation Real Sept 76 kW 50.0% $2,447 $1,092

Optimal Real Sept 81 kW 52.3% $2,444 $1,095

using data from the previous month. Once again we have one model

for weekdays and one for weekends. We then generate scenarios by

irst taking a draw from the appropriate Gaussian to estimate the

number of arrivals on the given day, and then gathering that many

samples from the corresponding GMM. We repeat this procedure

until we have accumulated 100 months worth of generated data.

The optimal solar capacity α∗ that minimizes the average total cost

across these 100 EV scenarios is then computed from (7)ś(9). The

result is denoted łPlanningž in Table 4. When the optimal solar

capacity α∗ = 76 kW is installed, on average we expect 57.5% of

EV demand to be met by on-site solar generation and the resulting

total cost to be $2,156 a month.

We can then evaluate how this α∗ chosen at planning time per-

forms using real charging sessions collected from the Caltech ACN

in Sept. 2018 and solar data from Sept. 2017 provided through the

NSRD, i.e., we evaluate (7) ś(8) with α∗ = 76 kW. The result is

denoted łEvaluationž in Table 4. Compared with no on-site solar

(α = 0 in (7) ś(8)), solar generation could have saved Caltech $1,092

for that month.

To appreciate how well this performs, suppose we optimize the

solar capacity α with respect to the real September EV data from

Caltech and NSRD solar data from Sept. 2017. To do this, we ind the

optimal α by minimizing (7) over α withV being the real data. We

then evaluate the performance of this optimally sized array using (7)

ś(8). The result, denoted by łOptimalž in Table 4, represents a lower

bound on the total cost of charging with on-site solar. Compared

with the performance of α∗ = 76 kW on the real September data,

the solar capacity and solar coverage are slightly higher, however

the total cost and savings difer by only $3 for that month. This

suggests that the capacity determined at planning time performs

very well on the real EV data.5

6.2.2 Optimal capacity over a year. The previous example only

covers a single month in order to illustrate our methodology. We

now estimate the optimal solar capacity over an entire year. To

do so we irst generate a set of scenarios {V1, ...,V240} where

each scenario is 1 month long using the procedure outlined in

5The small change in cost (0.12%) for a relative large change in capacity (6.2%) is
indicative of the shallow slope in the cost function near the minimum which is helpful
for robustness.
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Figure 9: Savings achieved versus no on-site solar for each

month of the year. We consider two scenarios, one where

the solar capacity is allocated optimally for eachmonth and

a second where the solar capacity is ixed based on an opti-

mization over the full year.

Section 6.2.1. This is equivalent to 20 years of simulated data. Since

solar generation and time-of-use prices depend on the month, we

adjust s(t) and ce (t) for each scenario based on its corresponding

month. We then solve (7)ś(9) to ind the optimal solar capacity over

the year and estimate the expected savings. The result for Caltech is

denoted by łYearly Optimalž in Figure 9. It shows that most savings

are concentrated during the summer months when both TOU rates

and solar production are high. Over the year we expect a total

savings of $5,043 of which $3,984 is from June through Sept.

For reference, we compute the optimal α∗ for each month indi-

vidually (as in Section 6.2.1) and estimate the corresonding savings.

The result, denoted by łMonthly Optimalž in Figure 9, represents

an upper bound on expected savings because it is not practical to

change the solar installation month-to-month. It shows that the

yearly optimal solar capacity α∗ can achieve an expected savings

that are close to their upper bounds.

6.2.3 Sensitivity to LCOE. We next illustrate the sensitivity of

these beneits to the LCOE of solar, which will continue to fall in the

coming years with a goal of $0.04 / kWh for commercial PV systems

by 2030 [17]. We irst generate a 20-year collection of scenarios

for JPL as we did for Caltech. For each LCOE we solve (7)ś(9) to

ind the optimal α∗ over the year for both Caltech and JPL. The

expected beneits are shown in Figure 10.

These results conirm that as solar prices decrease, there is an

increase in the optimal solar capacity, percent of charging demand

met by solar, and operators’ savings for both sites. At very low

solar costs, we can meet a very high percentage of total charging

demand using solar alone, especially at JPL where users’ schedules

align well with solar production. This results in substantial cost

reductions for site operators as well as signiicant reduction in the

environmental impact of EV charging. Thus as the LCOE for solar

decreases, we expect that on-site generation will play an important

role in reducing the cost and environmental footprint of workplace

EV charging.

The optimal capacities α∗ at the two sites difer due to diferences

in their usage proiles. While α∗ becomes nonzero at Caltech at a

LCOE of $0.17 / kWh, it remains zero at JPL until the cost drops

below $0.12 kWh. We suspect the reason for this is that JPL users

tend to arrive earlier than Caltech users, allowing them to be sched-

uled to avoid on-peak rates during the summer which reduces the
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Figure 10: Efect of solar levelized cost of energy and site

on optimal solar capacity, percent of demand met by solar

energy, and cost savings over the no solar case.

marginal beneit of on-site solar when LCOE is high. In addition,

since JPL has almost zero utilization on weekends and receives no

compensation for solar generated during that time, it makes less

sense to install solar there when LCOE is high.

7 SMOOTHING THE DUCK CURVE

While on-site renewable energy has many advantages, not all facil-

ities will have the ability to install large PV arrays. For these sites,

EVs must be charged using energy from the grid. The efect that

large numbers of EVs will have on the grid is highly dependent on

the usage patterns and lexibility of individual users. For this reason,

having access to real data for these studies is important. In this

section we use the ACN-Data dataset to illustrate the potential

of controlling a large number of EVs to help alleviate the steep

ramping conditions caused by the Duck Curve [2].

7.1 Problem Formulation

We formulate the problem of minimizing ramping as

SCH(V,Uramp, R̂) (10)

where we denote the objective by

Uramp :=
∑

t ∈T\{0}

(
d̂(t) − d̂(t − 1)

)2
(11)

and

d̂(t) :=
∑
i ∈V

ri (t) + d(t) (12)

Hered(t) is the net demand placed on the grid after non-dispatchable

renewable energy is subtracted from the total demand. While we

acknowledge that many other lexible loads such as water heaters,

appliances, pool pumps, etc. are currently included ind(t) and could

be used to aid in smoothing the Duck Curve, we focus our attention
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on the contribution of electric vehicles and thus treat these loads

as ixed.

7.2 Case Studies

7.2.1 ualitative results. In order to demonstrate the potential

of workplace charging to smooth the Duck Curve, we consider a

net demand curve for Dec. 11, 2018 from CAISO [3]. We consider

three levels of EV penetration in California based on the current

number of EVs in California (350,000) and the state’s goals for 2025

(1.5 million) and 2030 (5 million). For this case study, we make the

optimistic assumption that all of these vehicles would be available

for workplace charging. While this assumption is unrealistic, it

bounds the potential beneit from above at each level of penetration.

Once again we set the length of each discrete time interval in the

optimization to be 15 min.

To reduce the computational burden in solving (10) for millions

of EVs, we use a representative sample of n EVs drawn from our

learned distribution and scale down the net demand curve d̃(t) from

CAISO by the ratio of n to the desired number of EVs, denoted by N .

Deine d(t) := (n/N )d̃(t).We then solve (10)-(12) for d(t) and this

representative sample. Finally, we scale the optimal net demand

curve, d̂∗(t), by N /n to arrive at a inal curve in the original units.

For this experiment, n = 1, 000.

Figure 11 plots the resulting optimal net demand curve d̂∗(t) , for

both the Caltech data and the JPL data. Even with only 350,000 EVs,

we see a non-trivial smoothing of the net demand curve. With 1.5

million EVs under control, we see a signiicant illing of the "belly"

of the duck as well as a reduction in the morning and afternoon

ramping requirements. By the time we reach 5 million EVs under

control, we can see an almost complete smoothing of the duck in

the JPL case. We note however that for the Caltech distribution, 5

million EVs lead to a noticeable increase in peak demand. This is

because we use the distribution for free charging which includes a

signiicant number of short sessions that begin around 5-7 pm, thus

requiring us to charge these EVs during the peak of background

demand. This demonstrates beneits of concentrating EV charging

during normal working hours, for which the JPL distribution is

representative.

7.2.2 uantitative results. To examine quantitatively how much

we are able to smooth the Duck Curve, we vary the number of EVs

under control from 10,000 to 10 million for each distribution. We

optimally schedule each group of EVs using (10) and measure the

resulting maximum up and down ramps as well as the peak demand.

The results are shown in Figure 11. Surprisingly, we ind that with

as few as 2 million EVs under control, we can cut up and down

ramping requirements by nearly 50% with only a 0.6% increase in

peak demand when using the JPL distribution. This is encouraging

as JPL is closest to what we expect for workplace charging.

8 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have presented ACN-Data, a unique publicly

accessible dataset of workplace EV charging. We have presented

some of the interesting driver behavior exhibited in the dataset

and have described how to learn the underlying distribution using

GMMs. We have demonstrated that predicting session duration and
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Figure 11: Net demand curves after optimal smoothing. EV

penetration levels are based on the curent population of EVs

inCalifornia andCalifornia’s goals for 2025 and 2030. Upper

panel: the Caltech data. Lower panel: the JPL data.
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Figure 12: 15 minute maximum ramping rates and peak de-

mand relative to the baseline without EVs.

energy based on learned distribution from actual behavior in the

past is more reliable than asking users to predict these parameters

directly. We have also shown that with optimal solar sizing, about

50% of EV charging demand can be economically met by on-site

solar generation at current prices, leading to savings of approxi-

mately $1,000/month in the summer. Finally, we have demonstrated

that, with as few as 2 million EVs under control, we can limit the

up and down ramp necessary to track net demand in California by

nearly 50% with only a 0.6% increase in peak demand. In the future

we hope that ACN-Data will facilitate work in many areas of EV

research beyond those demonstrated here.
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